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ABSTRACT
Motivation: Is protein secondary structure primarily deter-
mined by local interactions between residues closely spaced
along the amino acid backbone or by non-local tertiary inter-
actions? To answer this question, we measure the entropy
densities of primary and secondary structure sequences, and
the local inter-sequence mutual information density.
Results: We find that the important inter-sequence interac-
tions are short ranged, that correlations between neighbor-
ing amino acids are essentially uninformative and that only
one-fourth of the total information needed to determine the
secondary structure is available from local inter-sequence
correlations. These observations support the view that the
majority of most proteins fold via a cooperative process
where secondary and tertiary structure form concurrently.
Moreover, existing single-sequence secondary structure pre-
diction algorithms are almost optimal, and we should not
expect a dramatic improvement in prediction accuracy.
Availability: Both the data sets and analysis code are freely
available from our Web site at http://compbio.berkeley.edu/
Contact: gec@compbio.berkeley.edu

INTRODUCTION
The secondary structure of a protein is a summary of the
general conformation and hydrogen bonding pattern of the
amino acid backbone (Frishman and Argos, 1995). This struc-
ture is frequently simplified to a sequence (one element per
residue) of helixes (H), extended strands (E) and unstructured
loops (L). It has long been recognized that each residue’s
secondary structure is appreciably correlated with the local
amino acid sequence (Szent-Gyorgyi and Cohen, 1957) and
that these correlations may be used to predict the second-
ary structure (Rost, 2001; Przybylski and Rost, 2002) or as a
contribution to threading potentials (Alexandrov et al., 1996;
McGuffin and Jones, 2003) and other tertiary structure pre-
diction algorithms (Bowie et al., 1991). The effectiveness of
local secondary structure prediction, and the utility of sec-
ondary structure potentials, depends upon the extent to which
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Primary:   YDPEEHHKLSHEAESLPSVVISSQAAGNAVMMGAGYFSP

Secondary: LLHHHHHHHHHHHHLLLEEELLHHHHHHHHHHHHLLLLL

Fig. 1. A protein’s amino acid sequence is correlated with the cor-
responding secondary structure sequence, represented here by a
sequence of helixes (H), extended strands (E) and unstructured loops
(L). For example, alanines (A) are typically associated with helixes,
while glycines (G) are often located near helix breaks. Also note
that secondary structure is strongly persistent. Helixes, e.g. are on
average about 10 residues long (Schmidler et al., 2000).

a protein’s structure, particularly the secondary structure,
is determined by local, short-ranged interactions between
residues closely spaced along the backbone, as opposed to
non-local or long-ranged tertiary interactions.

The strength, organization and relative importance of local
sequence–structure interactions can be determined with a stat-
istical analysis of the corpus of known protein structures. We
treat the primary and secondary structures of a protein as ran-
dom sequences comprising either the 20 letter amino acid or
the three letter extended strand/helix/other (EHL) structure
alphabets, as shown in Figure 1. These sequences contain
substantial local sequence and inter-sequence correlations that
can be quantified using entropic measures. To ensure accur-
ate results, we employ a large, carefully curated collection of
protein structures derived from the structural classification of
proteins (SCOP) (Murzin et al., 1995; Lo Conte et al., 2002)
database, which contains 2853 sequences.

Sequence information
Entropy is a measure of the information needed to describe a
random variable. Specifically, the entropy, H(X), of a discrete
random variable X, measured in bits, is defined as

H(X) = −E
[

log2 P(X)
] = −

∑
x∈X

P(x) log2 P(x), (1)

where X is the alphabet, the set of allowed states, x is an
element of X , E(X) is the expectation and P(x) is the prob-
ability of state x. The maximum achievable entropy is log2 |X |
bits, where |X | is the size of the alphabet. For a modern
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introduction to information theory, see the book by Cover
and Thomas (1991).

When considering the entropy of a collection of variables,
it is important to take into account inter-variable correla-
tions. For a statistically homogeneous random sequence with
local correlations, the appropriate information measure is the
entropy density, hµ, the rate at which the entropy of the
sequence increases with length:

hµ = lim
L→∞

H(XL) − Eh

L
. (2)

Here, H(XL) is the entropy of sequence fragments, XL, of
length L. The non-extensive excess entropy, Eh, is the quant-
ity of information explained away by taking account of inter-
site correlations. The entropy density is also referred to as the
entropy rate or metric entropy (Cover and Thomas, 1991).

A convenient measure of correlation between two discrete
random variables X and Y is the mutual information, I (X; Y ),
defined as

I (X; Y ) = H(X) + H(Y) − H(X, Y ), (3)

=
∑

x∈X ,y∈Y
P(x, y) log2

P(x, y)

P (x)P (y)
, (4)

where P(x, y) is the joint probability of observing states x

and y. If the random variables are independent [P(x, y) =
P(x)P (y)], then the mutual information achieves its lower
bound of zero. Mutual information cannot exceed the entropy
of either variable, and this upper bound is reached when the
variables are perfectly correlated [P(x, y) = P(x) = P(y)].

The appropriate entropic correlation measure for a pair of
statistically homogeneous random sequences is the mutual
information density, iµ,

iµ = lim
L→∞

I (XL; YL) − Ei

L
. (5)

Here, Ei is the excess mutual information.
When we consider the correlations between three random

variables, it is often useful to consider I (X; Y |Z), the condi-
tional mutual information (Cover and Thomas, 1991) of X and
Y , given a third variable Z. This quantity can be conveniently
defined in terms of mutual information:

I (X; Y |Z) = I (X; Y ) + I (X, Y ; Z) − I (X; Z) − I (Y ; Z).
(6)

Conditioning on a third random variable may increase or
decrease the mutual information.

MATERIALS AND METHODS
Secondary structure library
Ideally, a secondary structure library should be based upon
a representative, high-quality and non-redundant subset of
available protein structures. The Protein Data Bank (PDB)

(Berman et al., 2000) currently contains over 20 000 pub-
licly accessible structures, but many of these are very similar,
and many are of relatively low quality. The SCOP (Murzin
et al., 1995; Lo Conte et al., 2002) database provides a
convenient decomposition of PDB structures into domains,
and the ASTRAL (Brenner et al., 2000; Chandonia et al.,
2002) compendium provides representative subsets of SCOP
domains, filtered so that no two domains share more than
a given percentage level of sequence identity. This filtering
preferentially retains higher quality structures, as judged by
AEROSPACI scores (Chandonia et al., 2002), an agglomer-
ation of several structure quality measures. We selected the
ASTRAL 40% sequence identity subset of SCOP release 1.61,
which was further filtered to remove multi-sequence domains,
SCOP classes f (membrane and cell surface proteins) and
g (small proteins) and retain only those structures determ-
ined by X-ray diffraction at better than 2.5 Å resolution. The
protein sequences were taken from the ASTRAL rapid access
format (RAF) sequence mappings (Chandonia et al., 2002),
which provide a more reliable and convenient representation
of the true sequence than the PDB ATOM or SEQRES records.
The secondary structure sequences were determined by the
program STRIDE (Frishman and Argos, 1995) using each
protein’s hydrogen bonding pattern and backbone torsional
angles. STRIDE was unable to process a small fraction of
SCOP domains that were consequentially removed from fur-
ther consideration. The resulting library contains 2853 protein
domains and 553 373 residues.

For comparative purposes, we also studied the secondary
structure library of Cuff and Barton (1999, 2000), which con-
sists of 513 proteins and 84 091 residues. Secondary structure
assignments are provided by both STRIDE and the pro-
gram DSSP (Kabsch and Sander, 1983). This data set also
includes, for each structure, a multiple alignment of homo-
logous sequences. These multiple sequence alignments were
converted to amino acid probability profiles (Durbin et al.,
1998) using the program hmmbuild from HMMER (v2.3)
(Eddy, 2001, http://hmmer.wustl.edu/).

Both DSSP and STRIDE assign each residue’s secondary
structure to one of eight classes: α-helix (H), 310 helix (G),
π -helix (I), β-strand (E), β-bridge (B or b), Coil (C, L
or space), Turn (T) and Bend (S). Unstructured or poorly
resolved regions of the protein are unassigned (X). These eight
classes were reduced to the three letter alphabet, E (exten-
ded strand), H (helix) and L (loop/Other), using the common
CK mapping (Chandonia and Karplus, 1995; Frishman and
Argos, 1997; Cuff and Barton, 1999) E → E; H → H; all
others → L. We also considered another common reduction,
the ‘EHL’ mapping (Moult et al., 2001; Rost and Eyrich, 2001)
E, B → E; H, G, I → H; all others → L.

Entropy estimation and bias correction
The entropy of a discrete probability can be estimated by
sampling from the distribution and then replacing the true
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probabilities, P(x), by the observed frequencies, f (x) =
nx/N . Here, N is the total number of samples and nx is
the number of observations of state x. A useful alternative
approach is to construct an approximation of the true probabil-
ities, g(x) ≈ P(x) [e.g. Equation (11)], and then estimate the
entropy by the mean log-likelihood of the data (Moddemeijer,
2000).

H(X) = E
[

log2 P(X)
]

≥ E
[

log2 g(X)
]

≈
N∑

i=1

1

N
log2 g(xi). (7)

Similarly, the mutual information can be related to the mean
log odds since

I (X; Y ) = E

[
log2

P(X|Y )

P (X)

]
. (8)

A serious problem with either approach is that entropies estim-
ated from limited amounts of data tend to be significantly
biased significantly (Miller, 1955), resulting in a systematic
underestimation of the true entropy or overestimation of the
mutual information. We used non-parametric bootstrap res-
ampling (Efron and Tibshirani, 1993) to correct for this bias
and to estimate standard statistical errors. A total of 50 replicas
of the original data are generated by sampling, with replace-
ment, from the available sequences. This resampling has asso-
ciated systematic and random errors that are approximately the
same as the errors introduced by the original finite sampling
of sequences from the true random distribution. These error
estimates were not significantly improved when the number of
replicas was increased from 50 to 500. The requisite pseudo-
random numbers were drawn from the Mersenne Twister
generator (Matsumoto and Nishimura, 1998; Gough, 2003).

RESULTS
Entropy and correlations
In Figure 2, we plot the entropies for secondary structure
sequence blocks of length up to 9 (39 = 19 683 states). Of
the half million residues in our data set, about 23% are
assigned to strand, 39% to helix and 38% to other, res-
ulting in a relatively large single-site secondary structure
entropy of 1.53 bits. (The maximum entropy for three states
is log2 3 ≈ 1.59 bits.) However, neighboring secondary
structure elements are strongly correlated, resulting in a
relatively large nearest neighbor mutual information value,
I (Si ; Si+1) ≈ 0.89 bits. A linear regression to the asymptotic
functional form, H(SL) ∼ Lhµ+Eh (L ≥ 3), gives an excess
entropy of Eh = 0.997 ± 0.004 bits and an entropy density of
hµ = 0.598±0.001 bits per residue. This entropy density, the
amount of information needed to describe the secondary struc-
ture sequence, is considerably less than the single-site entropy

Fig. 2. Secondary structure sequences are strongly correlated, but
the correlations have a simple structure. In this figure we plot the
entropy of secondary structure blocks, H(SL), as a function of block
length, L (points). Bootstrapped confidence intervals are smaller
than the data point symbols. The linear increase in block entropies
is indicative of a simple sequence, one that can, to a good first order
approximation, be modeled as a low order Markov chain. A linear
regression to the data (solid line) gives an excess entropy of Eh ≈
1.0 bits (zero intercept) and a true secondary structure entropy density
of hµ ≈ 0.60 bits per residue. Over half of the single-site entropy is
explained away when we look beyond single-site statistics.

(1.53 bits) due to the strong inter-site correlations that may be
observed in Figure 1 and Table 1.

It is notable that the entropies for short blocks are almost
identical to the asymptotic linear extrapolation used to estim-
ate entropy density and excess entropy (Fig. 2). This property
is indicative of a sequence with a simple structure and suggests
that many of the important statistical features of secondary
structure sequences can be modeled successfully using a low
order Markov chain, as discussed by Crutchfield and Feldman
(2003).

In contrast to secondary structure, neighboring amino acids
are only weakly correlated. The nearest neighbor mutual
information, I (Ri ; Ri+1) ≈ 0.006 bits, is small relative to
the single-site entropy of H(Ri) ≈ 4.18 bits, which, con-
sequentially, is almost identical to the primary sequence
entropy density. Moreover, the mutual information between
neighboring amino acids, conditioned upon the corresponding
secondary structure [Equation (6)], is also relatively insigni-
ficant: I (Ri ; Ri+1|SiSi+1) ≈ 0.016 bits. Neighboring amino
acids are approximately independent irrespective of the local
structure, a result previously noted by Weiss et al. (2000).
The correlations between more distantly separated residues
are also very small.

The strength of the primary to secondary structure sequence
correlations is quantified by the inter-sequence mutual inform-
ation density. However, the mutual information can only be
directly calculated for short sequence blocks due to the large
effective alphabet of 60 (= 3 × 20) symbols. The observed
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Table 1. Summary of primary structure (R) and secondary structure (S)
sequence and inter-sequence information measures

Bits

Primary
Residue entropy H(Ri) 4.179 ± 0.001
Neighbor mutual info. I (Ri ; Ri+1) 0.006 ± 0.002
Conditional neighbor MI I (Ri ; Ri+1|SiSi+1) 0.0159 ± 0.0004
Entropy density hµ(R) 4.173 ± 0.003

Secondary
Residue entropy H(Si) 1.533 ± 0.002
Neighbor mutual info. I (Si ; Si+1) 0.893 ± 0.003
Entropy density hµ(S) 0.598 ± 0.001
Excess entropy Eh(S) 0.997 ± 0.005

Inter-sequence
Monomer mutual info. I (Ri ; Si) 0.0813 ± 0.0007
Dipeptide mutual info. I (RiRi+1; SiSi+1) 0.208 ± 0.002
Mutual info. density iµ(R; S) 0.164 ± 0.003

single-site mutual information is I (Si ; Ri) ≈ 0.081 bits, and
the dipeptide mutual information is I (RiRi+1; SiSi+1) ≈
0.208 bits, or 0.104 bits per residue. Fortunately, to a good
approximation we can neglect the correlations between amino
acids since neighboring residues are almost (conditionally)
independent. For example, the dipeptide mutual informa-
tion, I (RiRi+1; SiSi+1) ≈ 0.208 bits, can be approximated
by I (Ri ; SiSi+1) + I (Ri+1; SiSi+1) ≈ 0.198, an expression
that explicitly ignores amino acid correlations. The relatively
small error of 0.010 bits (<5% of the dipeptide mutual inform-
ation) is directly related to the mutual information between
neighboring amino acids since [by Equation (6)]

I (RiRi+1; SiSi+1) − I (Ri ; SiSi+1) − I (Ri+1; SiSi+1)

= I (Ri ; Ri+1|SiSi+1) − I (Ri ; Ri+1).

It follows that the inter-sequence mutual information dens-
ity can be estimated by examining Ic(R

1; SL), the mutual
information between a block of secondary structure and
the single amino acid located at the center of that block
(Fig. 3). Empirically, we expected these entropies to decay
exponentially toward their limiting value as block lengths
increase (Crutchfield and Feldman, 2003). A non-linear
regression to the functional form a − b exp(−L/c) (using
data from odd block lengths only) gives c = 3.8 ±
0.3 residues for the characteristic length scale, b =
0.108 ± 0.002 for the scaling prefactor and a = 0.164 ±
0.003 bits for the central amino acid to secondary struc-
ture mutual information in the infinity block length limit.
This last value is a good approximation to the inter-
sequence mutual information density, iµ(R; S), with a
bias, due to neglecting amino acid correlations, that is,
probably <10%.

Fig. 3. The direct local interactions between primary and sec-
ondary structure are short-ranged. Here, the mutual information,
Ic(R

1, SL), between a block of secondary structure of length L and
the single amino acid located at the center (odd L) or immediately
left of center (even L) of that block is plotted against block length
(points). Bootstrapped confidence intervals are smaller than the data
point symbols. A non-linear regression to an empirical exponen-
tial functional form gives a characteristic length scale of about four
residues, and a limiting value of Ic(R

1, S∞) ≈ 0.164, which is a
reasonable approximation to the total mutual information density,
iµ(R; S).

In summary, the direct local interactions are short-ranged,
neighboring amino acids are almost independent, secondary
structure sequences are correlated, but essentially Markovian,
and the important inter-sequence correlations are local, with
a characteristic length scale of about 4. The inherent informa-
tion content of secondary structure sequences is 0.60 bits per
residue, about four times greater than the 0.16 bits per residue
of local mutual information between primary and second-
ary structure. These measurements place severe constraints
on any single-sequence prediction algorithm that purports to
extract secondary structure information from local sequence
correlations. In particular, no analysis can extract additional
information from the signal [the data processing inequality
(Cover and Thomas, 1991)], and therefore any sequence local
prediction of secondary structure can contain no more inform-
ation than that contained in the local primary–secondary
sequence correlations.

Secondary structure hidden Markov model
Many different algorithms have been proposed for predicting
secondary structure from local inter-sequence correlations.
Interestingly, the underlying organization of the majority of
these algorithms does not reflect the underlying organiza-
tion of the intra- and inter-sequence interactions elucidated
in the preceding section. Typically, these methods use a large
primary structure window of around 15–27 residues to pre-
dict the single secondary structure element at the center of
that window and often assume that inter-amino acid correla-
tions are informative. However, even nearest neighboring
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Fig. 4. A factor graph (Kschischang et al., 2001) for P(S|R), rep-
resenting the decomposition of this complex, many-variable function
into simpler parts [Equations (9)–(11)]. Circles represent variables
and squares represent factors, local functions of relatively few vari-
ables. The upper and lower rows of circles represent the primary
and secondary structure sequences, respectively. In this diagram,
k = 2m = 6, for a window of size k + 1 = 7. One set of
factors, centered on sequence position i, has been highlighted. The
bottom factor connects k + 1 neighboring secondary structure ele-
ments and represents the approximation of the secondary structure
sequence probability by a k-th order Markov chain [Equation (11)].
The factor between the chains represents the inter-sequence depend-
ance [Equation (10)]. Thus, each residue is directly dependent upon a
window of secondary structure (length 2m+ 1), and is conditionally
independent of neighboring residues.

amino acids on the chain are only weakly correlated, and
these correlations provide negligible information about the
local structure.

As an alternative prediction algorithm, we have con-
structued a relatively simple hidden Markov model (HMM)
[Equations (9)–(11) and Fig. 4] that embodies three key
approximations: that protein sequences are statistically homo-
geneous, that direct secondary structure to primary structure
interactions are local along the chain and that amino acids at
neighboring sites are independent. Instead of a large primary
structure window, we use short, overlapping secondary struc-
ture windows. Similar models, with similar assumptions, can
be found in the work of Thompson and Goldstein (1997) and
Schmidler et al. (2000).

The probability, P(S|R), of a secondary structure sequence
S, given the primary sequence, R, can be rewritten using
Bayes’ rule as

P(S|R) = P(R|S)P (S)

P (R)
. (9)

Since the probability of an amino acid residue depends on the
local secondary structure and is almost independent of the
identity of neighboring residues, to a good approximation
the probability of each residue can be estimated from a short

window of local secondary structure,

P(R|S) ≈
L∏

i=1

P
(
Ri |S[i−m,i+m]

)
. (10)

Here, Xi is the element at position i and X[i,j ] is a sub-
sequence of length i − j + 1 starting at position i and ending
at j . Residues beyond the termini of the actual sequence
(i < 1, i > L) are treated as undetermined. The window
size, 2m + 1, is an adjustable parameter of the model and
need not be particularly long since the inter-sequence correl-
ations have a characteristic length scale of only about four
residues (Fig. 3). We approximate the prior probability of the
secondary structure sequence by a k-th order Markov chain,

P(S) ≈ P
(
S[1,k]

) L−k∏
i=1

P
(
Si+k|S[i,i+k−1]

)
. (11)

The primary structure sequence probabilities, P(R), can be
determined from normalization. Combining the preceding
approximations, [Equations (10) and (11)], using k = 2m for
consistency, generates a HMM (summarized in Fig. 4) that
emits the primary structure sequence on transitions between
blocks of secondary structure of length k.

The probabilistic model of Equations (9)–(11) can be gener-
alized so that the prediction is based upon a multiple sequence
alignment (MSA) of homologous protein sequences. First,
we convert the multiple sequence alignment into an amino
acid profile, θ = {θ1(r), θ2(r), . . . , θL(r)}, that represents
the probabilities of each amino acid at each position of
the protein of interest (Durbin et al., 1998). The second-
ary structure probability, given this profile, may then be
approximated as

P(S|θ) = P(θ |S)P (S)

P (θ)
, (12)

P(θ |S) ≈
L∏

i=1

P(θi |S[i−m,i+m]). (13)

We expect that each residue’s observed homology profile,
θi(r), will vary from the structure profile, P(r|S[i−m,i+m]),
due to sampling errors, random site-to-site variation and inter-
protein structural variation and because each residue is under
different structural variation and evolutionary constraints. As
a simple approximation, we use the large deviation distribu-
tion (Cover and Thomas, 1991) to model the variation of the
observed profile from the expected profile:

P(θi |β, S[i−m,i+m])

≈ exp
{
−βD

(
θi(r)

∥∥P(r|S[i−m,i+m])
)}

. (14)

Here, D(p‖q) = ∑
i pi ln(pi/qi) is the relative entropy.

We treat β as an empirical dispersion parameter that is
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independent of the secondary structure or primary structure
profile.

Computationally, the conditional secondary structure prob-
abilities can be derived from the amino acid sequence using the
standard forward–backward dynamic programming algorithm
(Rabiner, 1989). The time and memory complexities for a
naive implementation are O(L3k), which, despite the expo-
nential scaling, is feasible for moderate k. For example, with
k = 7, training on one half of our library (2853 sequences)
required 4 s from a modest contemporary PC (667 MHz
PowerPC G4), and prediction of the other half required
∼5 min, or about five sequences per second. In principle, a
more efficient implementation is possible since, although the
total number of secondary structure sequences scales as 3L,
the number of typical sequences with non-negligible probab-
ility scales as 2H(SL) ≈ 1.5L, by the asymptotic equipartition
principle (Cover and Thomas, 1991). The optimal prediction
at a particular site is the secondary structure element with the
greatest posterior probability.

The available sequence data were partitioned every other
sequence into disjoint test and training sets of approximately
equal size. The training set was used to estimate secondary
structure block probabilities, P

(
S[i,i+k]

)
(regularized with

a Laplace pseudocount of 1) and corresponding amino acid
profiles, P

(
Ri |S[i−m,i+m]

)
(regularized with a pseudocount

20 times the amino acid background probability). Statistical
errors were estimated from a full bootstrap resampling of both
the test and training sequences.

We estimate the amount of information that the HMM suc-
cessfully extracts by measuring the mean log odds of the
observed secondary structure fragments [Equation (8)], and
then extrapolating across different length scales to estimate
the model mutual information density, iHMM

µ [Equation (5)].
Since the maximum amount of information that can be
extracted is the previously estimated inter-sequence mutual
information density, iµ(R; S) (Fig. 3), we may consider prof-
itably the efficiency ratio, R = iHMM

µ /iµ, which is plotted in
Figure 5. This model is able to extract over 90% of the avail-
able information with a modest secondary structure window
size of only L = 7. In other words, the prediction algorithm
is almost optimal.

The most common measure of secondary structure pre-
diction quality is the average three-state accuracy, Q3, the
average fraction of residues that are correctly classified as
helix, strand or other. Prediction accuracy increases mono-
tonically with window length, reaching 65.9±0.3% at L = 9
(Fig. 5). We cannot reliably increase the window size further
due to the finite size of the training and test data sets.

The prediction accuracy can vary considerably due to vari-
ations in secondary structure assignment and due to variations
in the underlying data set itself. Our standard data set consists
of 2853 sequences derived from the 40% subset of SCOP
release 1.61, with STRIDE (Frishman and Argos, 1995) sec-
ondary structure assignments. We also considered prediction

Fig. 5. The HMM defined in [Equations (9)–(11)] is able to extract
over 95% of the available inter-sequence information. Here, the effi-
ciency, R = iHMM

µ /iµ and average three state accuracy (Q3) are
plotted against HMM window size (L = k + 1) for single-sequence
prediction on the SCOP 1.61 40% STRIDE/CK data set. Results for
the Barton data set are similar. Window sizes cannot be extended
reliably beyond those shown here due to finite sequence data. The
model information density, iHMM

µ , approaches (but cannot exceed)
the inter-sequence mutual information density, iµ, indicating that the
model is almost optimal. The prediction accuracy, Q3 = 65.9±0.3%
at L = 9, is the same (within statistical errors) as the accuracy of
a variety of comparable secondary structure prediction algorithms,
suggesting that these algorithms are also almost optimal.

accuracies for the Cuff–Barton (Cuff and Barton, 2000) lib-
rary of 513 sequences, using STRIDE and DSSP (Kabsch and
Sander, 1983) secondary structure assignments, and two dif-
ferent reductions of the STRIDE and DSSP alphabets to three
states, the CK and EHL mappings (For details, see Materials
and Methods). At L = 7, the accuracy ranges from 63.6±0.6
to 66.4 ± 0.7%. The maximum accuracy is achieved with the
CK mapping, irrespective of the secondary structure assign-
ment program. Essentially, the CK mapping produces more
coherent, less random secondary structure sequences than the
EHL mapping, which leads to more facile prediction. Using
the smaller library of only 513 sequences leads to substan-
tial standard errors of ∼0.6% and to a large estimated bias
of ∼0.7%. (Without a bias correction our maximum reported
accuracy would be 67%.) A number of different secondary
structure prediction algorithms have been tested upon the
Barton data set. However, given these small sample errors
and the variation due to changes in secondary structure assign-
ment, we cannot statistically distinguish accuracies separated
by less than about two points (Rost and Eyrich, 2001; Przybyl-
ski and Rost, 2002). Since the range of reported accuracies
is about 65–68% (Cuff and Barton, 1999; Schmidler et al.,
2000; Kloczkowski et al., 2002), we are obliged to con-
clude that many, very different secondary structure prediction
algorithms are statistically indistinguishable.

Our HMM model is almost optimal, in the sense that it
extracts almost all the available information. Moreover, the
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accuracy of our model is approximately the same (within stat-
istical and systematic errors) as the maximum accuracy of a
variety of other secondary structure prediction methods that
utilize only local sequence–sequence correlations (Chandonia
and Karplus, 1996; Cuff and Barton, 1999; Schmidler et al.,
2000; Kloczkowski et al., 2002). This suggests that these
algorithms are also almost optimal and that the modest predic-
tion accuracy is due to the fundamental lack of local structure
information. Conversely, the fact that these diverse, sophist-
icated prediction algorithms are not able to extract any addi-
tional signal from local correlations indicates that we have not
overlooked some subtle source of secondary structure inform-
ation in our analysis of local inter-sequence correlations.

It has been found that the secondary structure predic-
tion accuracy can be enhanced substantially by basing the
prediction upon a MSA of homologous protein sequences
(Rost and Sander, 1993) rather than just a single sequence.
Since protein structure tends to evolve relatively slowly, the
MSA essentially represents many semi-independent amino
acid sequences, each associated with approximately the same
secondary structure sequence. How informative are these
additional data? We extended our HMM to handle this evol-
utionary information [described in Equations (11)–(14)] and
tested the model on the MSAs provided with the Barton data
set (Cuff and Barton, 2000). This resulted in a three-state
accuracy of 72.2 ± 0.6%, an improvement of about six points
over the equivalent single-sequence results. Since the inform-
ation ratio for this data set was R ≈ 1.3, this modest accuracy
increase actually represents a considerable increase in inform-
ation. This accuracy is similar to reported accuracies of a
number of other algorithms tested on this data set (Schmidler
et al., 2000; Kloczkowski et al., 2002). It may be that many
profile-based secondary structure prediction algorithms are
essentially equivalent and that the differing results are due,
primarily, to differences in the quality of the input alignments
(Rost, 2001; Kloczkowski et al., 2002).

DISCUSSION
Although local inter-sequence information is insufficient
to determine secondary structure accurately, such correla-
tions are still useful to statistical tertiary structure prediction
algorithms. For example, in protein threading (Jones et al.,
1992), a primary sequence is matched to a structural template
using an amino acid contact potential and other similar poten-
tials derived from sequence–structure correlations. Recently,
the information contained in amino acid contacts was estim-
ated to be about 0.04 bits per contact, or 0.06 bits per residue
(Cline et al., 2002), which can be compared with our estimate
of 0.16 bits per residue of primary with secondary struc-
ture mutual information. Therefore, local structure potentials
may be of under-appreciated importance to threading and
other similar statistical structure prediction methods. Many
such methods do consider secondary structure (McGuffin and

Jones, 2003), but some of these only consider the direct
correlation between an amino acid and the secondary structure
class at that one residue (Bowie et al., 1991; Alexandrov et al.,
1996). By ignoring the correlations between an amino acid
and an extended segment of local secondary structure, such
methods lose over half of the available local signal and, unlike
secondary structure prediction algorithms, are not optimal.

Protein folding is also constrained by the scarcity of
local structure information since the mechanism by which
information is extracted, using either a computer or phys-
ics, is irrelevant. Secondary structure must be predominately
determined by non-local interactions, which in turn depend
on the overall native fold of the protein. But the native fold
cannot be achieved until the native secondary structure has
formed. Therefore, protein folding must typically proceed by
a cooperative mechanism (Baldwin and Rose, 1999) where
secondary and tertiary structures form concurrently. Note,
however, that since this conclusion is based upon a statistical
analysis, it applies only to proteins on the average and does not
preclude particular proteins, or parts of proteins, from fold-
ing via a hierarchal mechanism (Baldwin and Rose, 1999)
where pre-organized local secondary structure elements col-
lapse successively into ever-larger structures. For example,
it has been suggested that the B-domain of staphylococcal
protein A (Myers and Oas, 2001), a small single-domain
protein, can fold extremely quickly because of its strongly
defined native secondary structure, which persists even in the
unfolded state. If this is a general property of fast folding pro-
teins, then the widely divergent folding rates of single-domain
proteins may be strongly correlated with the accuracy to which
a particular protein’s secondary structure can be predicted
from the primary sequence.

There are at least two approaches to prediction that aim
to circumvent the lack of local structure information. One is
to utilize evolutionary information. Since protein sequences
evolve more rapidly than protein structure, a MSA of a homo-
logous family represents many semi-independent sequence
samples of approximately the same protein structure. Local
structure prediction quality is then limited by the size of the
family, the divergence of structure across the family and the
quality of the alignment. This strategy is commonly employed
in secondary structure prediction (Rost and Sander, 1993),
and improvements in accuracy to about Q3 ≈ 75% ± 3 are
routine (Cuff and Barton, 1999, 2000; Chandonia and Karplus,
1999; Rost, 2001; Eyrich et al., 2003). By modifying our
HMM to use evolutionary profiles, we find that even a mod-
est increase in prediction accuracy represents a substantial
increase in secondary structure information.

The alternative approach is to incorporate explicitly non-
local interactions. This is essentially what threading attempts
to do, although the relatively small magnitude of contact
potential information suggests that the bulk of non-local
information is subtle, and difficult to extract. Of course,
in principle we can determine the full three-dimensional
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structure of a protein using an atomic detailed molecular sim-
ulation. Until this becomes routinely feasible, computational
structure determination will have to proceed via less direct,
statistical approaches.
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